Mock exam Open Economy Macroeconomics

Instructions.

- To be handed in on Tuesday 14 November (voluntary). Answers will be provided Tuesday 21 November
- The exam consists of two parts: A and B. Both parts carry equal weights. You should answer both parts. Part A consists of four questions, of which you shall answer three. You can choose yourself which question you will leave out. Answer briefly, intuitively and precisely. Part B consists of one question. Answer in depth and in detail.

PART A

- 1. An investor holds an optimal portfolio of foreign and local currency denominated assets. Let f be the foreign currency share of her portfolio. It can be written as the sum of of the *minimum-variance* portfolio and the speculative portfolio: $f = f_M + f_S$. Explain these components. What happens to f if (i) the investor becomes more risk averse? (ii) exchange rate volatility increases?
- 2. Explain the difference between uncovered interest rate parity and covered interest rate parity. Do these parity conditions hold in practice?
- 3. Consider a small open endownment economy. Assume that the representative household has perfect foresight and maximises an intertemporally additive utility function over an infinite horizon. The discount factor β is equal to 1/(1+r) where r is the exogenous world real interest rate. Show that the optimal current account balance can be written

$$CA_t = Y_t - \widetilde{Y}_t$$

where \widetilde{Y}_t is the permanent level of the endowment Y_t defined as

$$\widetilde{Y}_t \equiv \frac{r}{1+r} \sum_{s=t}^{\infty} \left(\frac{1}{1+r}\right)^{s-t} Y_s$$

Interpret the current account equation.

4. Explain how a country can gain from international borrowing and lending.

PART B

A version of Dornbusch's floating exchange rate model is:

$$Y = C(Y) + X\left(\frac{SP^*}{P}, Y, Y^*\right) \tag{1}$$

$$\frac{M}{P} = m(i, Y) \tag{2}$$

$$\frac{M}{P} = m(i,Y)$$

$$\frac{\dot{P}}{P} = \gamma(Y - \overline{Y})$$
(3)

$$\frac{\dot{S}}{S} = i - i^* \tag{4}$$

where Y is domestic output, Y^* is foreign output, S is the nominal exchange rate (an increase in S is a depreciation of the domestic currency), P is the domestic price level, P^* is the foreign price level (in foreign currency), M is the money supply, i is the domestic nominal interest rate, i^* is the foreign nominal interest rate, $C(\cdot)$ is a consumption function, $X(\cdot)$ is the trade balance function, \overline{Y} is equilibrium output, and γ is a positive constant

- a. Briefly explain the equations of the model
- b. The initial value of the domestic price level is given from history. How is the initial value of the exchange rate pinned down?
- c. Exchange rate fluctuations can be highly volatile. How does this model explain such volatility?
- d. Preferably using a phase-diagram, trace the long-run and transitional effects of an unanticipated permanent increase in the money stock on P and E. What are the long-run and transitional effects on Y and i?